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Unravelling the origins of anomalous diffusion: From molecules to migrating storks
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Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared
displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from
microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from
multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time,
we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the
data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph
effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We
show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve
open questions in the fields of single-particle tracking in living cells and movement ecology.
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I. INTRODUCTION

Normal diffusion or transport processes obey the Gaussian
central limit theorem (CLT) and are ergodic, i.e., mean values
of various observables in the system do not depend on the
averaging method. The CLT states that if a random time series
x(t ) is the sum of random variables which are (i) identically
distributed (with a stationary distribution), (ii) have a finite
variance, and (iii) are independent, then the probability den-
sity function (PDF) P(x, t ) of x at time t has a Gaussian shape
(see Sec. III). The mean-squared displacement (MSD) then
satisfies 〈x2(t )〉 ∝ t at long times, where 〈·〉 denotes ensemble
averaging (EA). Yet, advances in high-fidelity methods for
single-particle tracking [1,2] and detailed data of animal paths
[3,4] show that many natural processes are in fact anomalous,
as they violate (some of) the CLT’s conditions [5]. Condi-
tion (i) can be violated, e.g., when the measured trajectories
are confined for increasingly long periods in certain spatial
regions, hindering their expansion. Condition (ii) can be vi-
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olated, e.g., in financial time series, where large fluctuations
are highly probable. Condition (iii) can be violated, e.g., for
biased or correlated motion. Such violations typically yield

〈x2(t )〉 ∝ t2H , (1)

with the Hurst exponent being H $= 1/2.
Given an empirical time series displaying anomalous trans-

port, the ability to distinguish between the various violations
of the CLT is crucial, e.g., to determine the system’s expansion
rate [6,7], rare event statistics [8,9], and method of averaging
[10–12], as well as to infer features in the diffusion medium
[13–16] and elucidate the underlying microscopic processes.
However, this characterization remains a major challenge in
various fields, including single-particle tracking and move-
ment ecology [17–19], and much effort is made to develop
techniques to tackle it; see, e.g., Refs. [20–23]. Recently,
machine-learning methods for analyzing anomalous transport
data have been widely studied, see, e.g., Refs. [24,25], and for
many applications they were shown to outperform estimators
based on classical statistics [26]. Yet the “black box” nature of
these data-driven algorithms may hinder the ability to account
for the underlying reasons of the observed phenomena [26].

Here, based on positional (tracking) data, we employ a
specialized three-effect decomposition method [27,28] to dis-
entangle the effects leading to anomalous transport, without
making prior assumptions on the underlying model governing
the dynamics. By analyzing three independent properties of
the time series presented below, we determine whether the
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